FULL

IMPORTANT: FULL is an outdated code that has effectively been superseded by GS2 and GYRO. FULL is no longer being developed and is only run occasionally (by G. Rewoldt only). Anything that FULL can do, GS2 and/or GYRO can do better (because of their more accurate collision operators) and more conveniently, since GS2 and GYRO can be run as "black boxes", automatically converging to the most unstable root, whereas running FULL is an art. Also, FULL can miss roots if the initial guess for the root finder is not close enough.

1. Code Name: FULL
2. Code Category: gyrokinetic stability
3. Primary Developer: G. Rewoldt
4. Other Developers and Users: None
5. Short description: Code to calculate linear growth rates and real frequencies and quasilinear fluxes for microinstabilites using ballooning representation and model collision operator.
6. Computer Language: Fortran 77, ~5000 lines
7. Type of input required (including files and/or output from other codes). Is there any special input preparation system (eg, GUI): Profile data file in TRANSP time_slices format, MHD equilibrium files in PEST-1 format, text parameter files (see below). No.
8. Type of output produced (including files that are read by other codes and sizes of large files and synthetic diagnostics): text output file, NCARG plot file
9. Describe any postprocessors which read the output files: None
10. Status and location of code input/output documentation: This web page.
11. Code web site? Here.
12. Is code under version control? What system? Is automated regression testing performed? No
13. One to two paragraph description of equations solved and functionality including what discretizations are used in space and time: Quasi-neutrality equation, and, in EM version, Ampere's law, obtained from linearized gyrokinetic equation with ballooning representation (radially local, equivalent to flux-tube) and model electron collision operator. Spatial discretization is by finite number of Hermite basis functions along unperturbed magnetic field line. FULL is a linear eigenvalue code using a root finder for eigenfrequencies.
14. What modes of operation of code are there (eg: linear, nonlinear, reduced models, etc ): Linear only, either electrostatic or fully electromagnetic, with either numerically-calculated MHD equilibrium or s-alpha model MHD equilibrium. Also electrostatic stellarator version of code interfaced with VMEC-Terpsichore-VVBAL MHD equilibrium data. All five are separate versions of FULL.
15. Journal references describing code: G. Rewoldt, W.M. Tang, and M.S. Chance, Phys. Fluids 25, 480 (1982); G. Rewoldt, W.M. Tang, and R.J. Hastie, Phys. Fluids 30, 807 (1987); G. Rewoldt, L.-P. Ku, W.M. Tang, and W.A. Cooper, Phys. Plasmas 6, 4705 (1999).
16. Codes it is similar to and differences: GS2 (by W. Dorland - U. Maryland, based on earlier code by M. Kotschenreuther - U. Texas). FULL is an eigenvalue code which is strictly linear, while GS2 is an initial-value code that can be run either in linear or nonlinear mode. The linear-mode physics in the two codes is comparable, except that GS2 now has a much better collision operator than FULL. GYRO (by J. Candy and R. Waltz - GA) is a gyrokinetic initial-value code that can be run either in linear or nonlinear mode, and either in radially-local (flux tube) or global mode. GYRO also has a much better collision operator than FULL. GYRO has recently added the capability to be run as an eigenvalue code.
17. Results of code verification and convergence studies (with references): FULL has been compared with GS2 and other codes several times for Cyclone parameters and for other parameters. FULL was compared with M. Kotschenruether's code (the predecessor of GS2) for several cases (but not Cyclone) [Comput. Phys. Commun. 88, 128 (1995)]. Then, FULL was compared again with the Kotschenreuther code for the Cyclone parameters by A. Redd in the A. Dimits, et al. paper [Phys. Fluids 7, 969 (2000)]. Next, E. Belli and G. Rewoldt compared FULL to GS2 for a stellarator case [Bull. Am. Phys. Soc. 46(8), 232 (2001)]. FULL was also compared against GS2 for drift modes and kinetic ballooning modes for NSTX and DIII-D parameters in the fully-electromagnetic case [Phys. Plasmas 10, 2881 (2003)]. Later, J. Kinsey and G. Rewoldt compared FULL against GLF23 for Cyclone parameters, and for the DIII-D shot data that underlies the Cyclone parameters, for varying degrees of completeness of the input data [Phys. Plasmas 11, 844 (2004)], and the GLF23 code had previously been tuned up to match the GS2 results for the Cyclone parameters and other parameters. More recently, FULL has been compared for the Cyclone parameters with the GTC and GT3D (global) codes [Comput. Phys. Commun. 177, 775 (2007)], and the GTS (global) code [Phys. Plasmas 17, 072511 (2010)]. All of these comparisons gave good agreement.
18. Present and recent applications and validation exercises (with references as available): In recent years, the FULL code has only been employed occasionally, as requested. The FULL code is now being applied to the NSTX edge-pedestal region (somewhat outside its actual region of validity, since it was designed as a core region code), for general survey purposes.
19. Limitations of code parameter regime (dimensionless parameters accessible): k_\theta \rho_i of order unity or less, but with n >> 1, \nu^*_e less that unity (banana regime), \omega much less that ion cyclotron frequency.
20. What third party software is used? (eg. Meshing software, PETSc, ...): NAG library and NCARG graphics library
21. Description of scalability: None (single processor only).
22. Major serial and parallel bottlenecks: Not applicable.
23. Are there smaller codes contained in the larger code? Describe. No
24. Supported platforms and portability: Currently run on Sunfire (Portal) systems at PPPL. Can be ported to any UNIX platform with Fortran compiler and with NAG and NCARG libraries available.
25. Illustrations of time-to-solution on different platforms and for different complexity of physics, if applicable: Takes several minutes per root-finder iteration on single Sunfire processor, and growth rate convergence typically requires 5 to 10 iterations with reasonably good initial guess.

FULL Input data

s-\alpha model MHD equilibrium version (electrostatic and electromagnetic, model collision operator):

Input parameters are specified for this version of FULL in the file "u1d1dat" by line number and field column numbers. Floating-point (starting with A to H or O to Z) and character parameters are to be left-justified. Integer parameters (starting with I to N) are to be right-justified. Users should refer to the published reference (Phys. Fluids 30, 807 (1987)) for definitions and notation and equations. Input parameters that should never change are not included here. In particular, lines 1-114 of u1d1dat contain integration tables that never change. All parameters are local to the chosen magnetic surface.

line
columns
name
meaning
values & comments
115
1-5
nions
number of species
2 <= nions <= 4, first species hydrogenic (Z=1), last species electrons
116
1-10
epz
r/R
for chosen magnetic surface
116
11-20
te
T_e
in keV
116
21-30
qpr
q'r/q = \hat s

116
31-40
biz
b_{i \theta}
= k_\theta^2 \rho_1^2 / 2 for species 1
116
41-50
xne
n_e
in 10^{13} cm^{-3}
116
51-60
etae
\eta_e
(d \ln T_e / dr) / (d \ln n_e / dr)
116
61-70
rnrz
r_{ne}/r = L_{ne}/r
-(d \ln n_e / dr)^{-1} / r
116
71-80
omr
\omega_r / \omega_{*e}
initial guess for real frequency / \omega_{*e}
117
1-10
omi
\gamma / \omega_{*e}
initial guess for growth rate / \omega_{*e}
117
11-20
sigr
\delta
width parameter for basis functions, typically >= 0.2
117
21-30
beta
\beta
total plasma pressure / magnetic pressure
117
31-40
q
q
safety factor
117
41-50
extra
available extra multiplier
set to 1.0 if not used in code source file
117
51-60
alpha
extra multiplier for \alpha
\alpha itself is calculated from other parameters; set alpha to 0. to turn off Shafranov shift in s-\alpha model MHD equilibrium
118
1-10
oldomr
previous value of omr
for restarts, otherwise 0.
118
11-20
oldomi
previous value of omi
for restarts, otherwise 0.
118
21-30
oldevr
previous value of matrix eigenvalue
(real part) for restarts, otherwise 0.
118
31-40
oldevi
previous value of matrix eigenvalue
(imaginary part) for restarts, otherwise 0.
118
41-50
chizr
\theta_0 = \theta_k
ballooning parameter (real, in radians)
118
51-60
chizi

always set to 0.
118
61-70
r0
R
major adius for chosen surface, in cm
118
71-78
idplot
plot label
8 characters
119
1-10
xnine(1)
n_1/n_e
density fraction for ion species 1
119
11-20
zi(1)
Z_1
charge number for ion species 1
119
21-30
atno(1)
m_1/m_H
atomic number for species 1
119
31-40
ti(1)
T_1
temperature for ion species 1, in keV
119
41-50
etai(1)
\eta_1
(d \ln T_1 / dr) / (d \ln n_1 / dr)
119
51-60
rnine(1)
r_{n1}/r_{ne}=L_{n1}/L_{ne}

Repeat for other ion species, if any, and finally electrons.

Parameters must be such as to give both equilibrium charge neutrality (\sum_{j=1 to nions} Z_j (n_j/n_e) = 0.) and the radial derivative of equilibrium charge neutrality (\sum_{j=1 to nions} Z_j (n_j/n_e) / (r_{nj}/r_{ne}) = 0.).

Use the compile-and-load script "clsu1d1esP" for the electrostatic version ("clsrcu1d1P" for the electromagnetic version), for the Leahey-Fujitsu compiler, to produce the executable file "cu1d1esP" ("ctu1d1P") from the Fortran source files su1d1esP.f (srcu1d1P.f) and dsncar.f (for NCAR graphics library argument conversion).

Numerical MHD equilibrium version (electrostatic and electromagenetic, model collision operator)

Input density and temperature parameters, etc, are obtained for these versions of FULL from a "time_slices" file containing TRANSP system experimental data for a specific experimental shot at a specific time. Also, the input MHD equilibrium data are obtained from JSOLVER MHD equilibrium code and PEST mapping code output, which are obtained using input from the same time_slices file. In addition, these versions of FULL require a "u1d6dat" input parameter file, and also a "u1d6inttab80" file, which never changes, containing integration tables. The namelist input parameters in the u1d6dat input file are described below. Users should refer to the published reference (Phy. Fluids 25, 480 (1982)) for definitions and notation and equations. Input parameters that should never change are not included here. Equilibrium charge neutrality and its derivative are enforced by adjusting the density and density gradient for ion species 1, normally thermal deuterium. The ion species currently set up are: (1) thermal deuterium, (2) thermal hydrogen, (3) thermal tritium, (4) carbon impurity, (5) hot beam deuterium, (6) hot beam tritium, and (7) thermal helium. Electrons are handled separately. These assignments can be changed inside the FULL Fortran source file. Temporary changes in the FULL Fortran source file (there have been many) are marked with "c temporary" comment lines.

Name
Meaning
Values & Comments
ra
/sqrt{norm. toroidal flux}
0. < ra < 1., In practice, since FULL is a core code, it should never be used for ra > 0.9 or so
roikth
k_\theta \rho_1
Note: rho_1 = \sqrt{2 T_1 / m_1} / (e B_0 / m_1 c), for ion species 1, with the \sqrt{2}, is the FULL code convention
ltor
n (tor. mode number)
Specify either roikth or ltor, but not both
omr
\omega_r / \omega_{*e}
Initial guess for real frequency / \omega_{*e}
omi
\gamma / \omega_{*e}
initial guess for growth rate / \omega_{*e}
omra
\omega_r / (10^5 s^{-1})
Initial guess for real frequency in units of 10^5 s^{-1}
omia
\gamma / (10^5 s^{-1})
Initial guess for growth ate in units of 10^5 s^{-1}. Specify either (omr & omi) or (omra & omia), but not both
idplot
plot label
8-character plot label
trfile
name of time_slices file
See below for how to generate this file
iswpl1
plot limit along field line
Plots along field line (i.e., in \theta) go from iswpl1 to -iswpl1
swext2
extra multiplier
Used for artificial variation inside source file; set to 1.0 when not used
swext
extra multiplier
Used for artificial variation inside source file; set to 1.0 when not used
sigr
\alpha
Basis function width parameter, typically >= 0.2
swbeta
multiplier for \beta
Use for artificial varaiation of \beta, relative to time_slices local value
errmax
residue limit
i.e., maximum matrix eigenvalue magnitude, for termination of root-finder iterations; typically 1.e-4 for electrostatic runs, 1.e-8 for electromagnetic runs
concoll
collision multiplier
for artificial variation of collision frequencies, set to 0.0 for collisionless runs
chizr
\theta_0 = \theta_k
Ballooning parameter (real, in radians)
e0beam
full beam energy
in keV, used with slowing-down distribution function for hot beam species
imode
ion species mode
0 means species not included in run, 1 means included with Maxwellian distribution, 2 means included with slowing-down distribution (only one species can have imode=2)
zi
Z_j
Charge number for species j (Z_j = 1 for species 1)
atno
m_j / m_H
atomic number for species j
sn
smoothing parameter
Spline smoothing parameter for density for ion species j; set to 0. for no extra smoothing
st
smoothing parameter
Spline smoothing parameter for temperature for ion species j; set to 0. for no extra smoothing
dm
density multiplier
Artificial multiplier for density of ion species j; set to 1. to use time_slices value
sne
smoothing parameter
Spline smoothing parameter for density for electrons; set to 0. for no extra smoothing
ste
smoothing parameter
Spline smoothing parameter for temperature for electrons; set to 0. for no extra smoothing

Use the compile-and-load script "clsu1d6esP" for the electrostatic version of FULL ("clsrcu1d6P" for the electromagnetic version) to generate the executable file "cu1d6esP" ("ctu1d6P"), using the Pathscale compiler, from the Fortran source file "newestsu1d6esP.f" ("newersrcu1d6P.f") and dsncar.f and the object file bzio.o (part of the PEST code system).

How to generate input data for numerical-MHD equilibrium version of FULL

To get started, you need a shot number (say, 129336) for a particular tokamak (say, NSTX), and a time in the shot (say, 0.392 s, with time-averaging over say +/- 0.001 s), along with a TRANSP run number for that shot (say, A01). These choices will normally be specified by an experimentalist. We will employ a particular file-naming convention here using these items. Then, the steps are:

1. Run time_slices:
time_slices
t
y
nstx
q
129336A01
0.392
0.001
tr_129336A01-392

This will produce a time_slices file (i.e., an ASCII text file) named tr_129336A01-392. You should spend some time looking through this file to understand its format.

2. Edit the executable script file "runeqjP", which is used to set up input from the tr_129336A01-392 file for the JSOLVER MHD equilibrium code and to run JSOLVER, by changing the text string in line 14 of runeqjP to "129336A01-392", and then saving runeqjP. Then run runeqjP to calculate the MHD equilibrium (forced in the sample input file to be up-down symmetric, though FULL does not require that).

3. Edit the executable script file "runmap1P" to change the text string in line 15 to "129336A01-392", and then save runmap1P. Then run runmap1P to map the MHD equilibrium to the Pest-1 coordinate system used by this version of FULL. This produces the MHD equilibrium files "mapdsk" and "mapout1" read in by FULL.

How to run FULL

At each iteration of the root-finder for \omega, the code recalculates all of the matix elements, and then calculates all of the eigenvalues and all of the eigenvectors of the matrix. The eigenvalues are sorted in order of increasing magnitude. In the "u1d6out" (ASCII text) output file, at each iteration the real and imaginary parts of all of the eigenvalues are listed, along with the position in the sorted list, and the index of the dominant basis function for that eigenvalue (i.e., for the basis function with the largest-magnitude coefficient). The function of \omega that is fed to the root-finder is a chosen eigenvalue of the matrix. If the initial guess for \omega is reasonably good, the matrix eigenvaoue of interest will be at or near the top of the sorted list. The most unstable eigenmode of the system, the one with the highest linear growth rate, will normally be the lowest mode of the system, that is, the one with the fewest nodes along the field line. With zero nodes, the eigenfunction will look like a Gaussian and be dominated by the Hermite basis function of index 0 (or sometimes index 2), if the basis function width parameter is properly chosen, for the electostatic version.

When the FULL code run is started, the first iteration uses the input guess for \omega. In the second iteration, the input guess is shifted slightly, and a crude two-point approximation for the converged value of \omega (in units of \omega_{*e}) is calculated for each matrix eigenvalue on the sorted list. At the third or later iterations, the code will by itself choose the first matrix eigenvalue of the sorted list with dominant basis function index 0 or 2 (or 32 or 33 or 64 or 65 in the electromagnetic versions of FULL for 32 basis functions/field, or alternatively 48 or 49 or 96 or 97 for 48 basis functions/field), and feed it to the root finder. After each iteration, the FULL code will input a two-digit integer code from the keyboard which tells it what to do for the next iteration. If the code is 00 (or a carriage return), the code will continue using the current choice for the matrix eigenvalue to feed to the root finder. For codes 01 to 32 (electrostatic version) or 01 to 96 (electromagnetic version), FULL will switch to the corresponding matrix eigenvalue on the list as the chosen function for the root finder. Code 97 is no longer used. Code 99 means to terminate the run with plotting. Code 98 means to terminate the run without plotting. Code -9 means to input new guesses for \omega-r/\omega_{*e} and \gamma/\omega_{*e} from the keyboard. Codes -8 to -1 are not used. Inputing several returns from the keboard tells the code to proceed to do several more iterations using its own choices from the sorted matrix eigenvalue list. The code terminates with plotting when the residue (the magnitude of the currently chosen matrix eigenvalue) is less than the value of errmax in the input file.

Stellarator version of FULL (electrostatic and collisionless only)

Users should refer to the published reference for this version of FULL (Phys. Plasmas 6, 4705 (1999)) for definitions and notation. The stellarator version of FULL requires MHD equilibrium data calculated by the 3D version of the VMEC MHD equilibrium code, and then mapped from VMEC coordinates into Boozer coordinates by the TERPSICHORE code. In the past, this has always been done by someone else who runs the 3D VMEC code routinely for various existing stellarators and various stellarator designs. The result of this process, to be provided by that person, is a "fort.25" file, which describes the MHD equilibrium throughout the stellarator volume. This fort.25 file is then to be read in by W.A. Cooper's VVBAL code, which calculates the quantities needed by the stellarator version of FULL along a chosen magnetic field line, specified by a value for the magnetic surface number LXCONT, the field line label within a surface \alpha = \zeta - q \theta = ALF, and a ballooning parameter \theta_0 = \theta_k = SK. To run VVBAL, these parameters should be specified in the "ft5bal" file. Also insert the initial and final magnetic surface numbers for the fort.25 file (NSTART and NSTOP respectively), as specified by the person who runs VMEC and TERPSICHORE. The other parameters in ft5bal can remain unchanged. Then run VVBAL by running the compbalP script (for the Leahey-Fujitsu compiler). This will produce a file fort.15 containing the needed MHD equilibrium information along the chosen field line. Then run the script clsu1d2es (for the Leahey-Fujitsu compiler) to compile and load the executable file cu1d2esP for the stellarator version of FULL. FULL reads in the fort.15 file and the input parameter file u1d2dat. The form of this u1d2dat file is generally similar to that for the s-\alpha model MHD equilibrium tokamak version of FULL. Lines 1 to 115 of u1d2dat never change. The parameters that do change, specified by line numbers and field column numbers are:

Line
Columns
Name
Meaning
Values & Comments
116
1-5
nions
number of species
2 <= nions <=4, first species Hydrogenic (Z=1), last species electrons
116
21-25
insrf
magnetic surface number
not used for calculation
116
36-40
ltor
tor. mode number (n)
set to -1 to determine ltor (n) from value of k_\theta \rho_1 (roikth) instead
117
1-5
ice
switch for untrapped electrons
1 = on, 0 = off
117
6-10
ite
switch for trapped electrons
1 = on, 0 = off
117
11-15
ici
switch for untrapped ions
1 = on, 0 = off
117
16-20
iti
switch for trapped ions
1 = on, 0 = off
118
1-10
te
T_e
in keV
118
11-20
etae
\eta_e
(d \ln T_e / dr) / (d \ln n_e / dr)
118
21-30
xne
n_e
in 10^{13} cm^{-1}
118
31-40
swext2
available extra multiplier
set to 1.0 if not used in source file
118
41-50
roikth
k_\theta \rho_i
for species 1
118
51-60
rner
r_{ne}/r = L_{ne}/r
-(d \ln n_e/dr)^{-1} / r
118
61-70
q
q
safety factor
119
1-10
omr
\omega_r / \omega_{*e}
initial guess for real frequency / \omega_{*e}
119
11-20
omi
\gamma / \omega_{*e}
initial guess for growth rate / \omega_{*e}
119
21-30
oldomr
previous value of omr
for restarts, otherwise 0.
119
31-40
oldomi
previous value of omi
for restarts, otherwise 0.
119
41-50
oldevr
previous value of matrix eigenvalue
(real part) for restarts, otherwise 0.
119
51-60
oldevi
previous value of matrix eigenvalue
(imaginary part) for restarts, otherwise 0.
120
1-10
sigr
\delta
typically >= 0.2; width parameter for basis functions
120
21-30
idplot
plot label
8 characters
121
1-10
xnine(1)
n_1/n_e
for ion species 1
121
11-20
zi(1)
Z_1
for ion species 1
121
21-30
atno(1)
m_1/m_H
atomic number for ion species 1
121
31-40
ti(1)/te
T_1/T_e
temperature ratio for ion species 1, to electron temperature
121
41-50
etai(1)
\eta_1
(d \ln T_1/dr) / (d \ln n_1/dr)
121
51-60
rnine(1)
r_{n1}/r_{ne} = L_{n1}/L_{ne}

121
61-70
imode(1)
species mode
-1 means electron species with Maxwellian distribution
0 means ion species with Maxwellian distribution
1 not used
2 means ion species with slowing-down distribution





Repeat for other ion species and finally for electron species.

Parameters n_1/n_e and r_{n1}/r_{ne} (0. in input) for ion species 1 are automatically adjusted to give both equilibrium charge neutrality (\sum_{j=1 to nions} Z_j (n_j/n_e) = 0.) and the radial derivative of equilibrium charge neutrality (\sum_{j=1 to nions} Z_j (n_j/n_e) / (r_{nj}/r_{ne}) = 0.). Also, \eta_1 should be input as \eta_{ie} = (d \ln T_1/dr) / (d \ln n_e/dr), and this will be adjusted by FULL to \eta_1 after (r_{n1}/r_{ne}) is calculated.

Bibliography for FULL Code Applications

1. Ion heat transport studies in JET
P. Mantica, C. Angioni, B. Baiocchi, M. Baruzzo, M.N.A. Beurskens, J.P.S. Bizarro, R. Budny, P. Buratti, A. Casati, C. Challis, J. Citrin, G. Colyer, F. Crisanti, A.C.A. Figueiredo, L. Frassinetti, C. Giroud, N. Hawkes, J. Hobirk, E. Joffrin, T. Johnson, E. Lerche, P. Migliano, V. Naulin, A.G. Peeters, G. Rewoldt, F. Ryter, A. Salmi, R. Sartori, C. Sozzi, G. Staebler, D. Strinzi, T. Tala, M. Tsalas, D. Van Eester, T. Versloot, P.C. deVries, J. Weiland, and JET EFDA Contributors
presented at the Thirty-Eighth European Physical Society (EPS) Conference on Plasma Physics (EPS 2011), 27 June - 1 July 2011, Strasbourg, France, paper I4.112.
Submitted to Plasma Physics and Controlled Fusion (2011)
2. Linear Comparison of Gyrokinetic Codes with Trapped Electrons
G. Rewoldt, Z. Lin, and Y. Idomura
Princeton Plasma Physics Laboratory Report PPPL--4195 (November 2006) 8 pp.
Comput. Phys. Comm. 177, 775--780 (15 November 2007).
3. Comparison of Microinstability Properties for Stellarator Magnetic Geometries
G. Rewoldt, L.-P. Ku, W.M. Tang
Princeton Plasma Physics Laboratory Report PPPL--4082rev (June 2005, revised August 2005) 26 pp.
Phys. Plasmas 12, 102512 (October 2005) 10 pp.
4. Multispecies Density and Temperature Gradient Dependence of Quasilinear Particle and Energy Fluxes
G. Rewoldt, R.V. Budny, W.M. Tang contributors to the EFDA-JET Workprogram
Princeton Plasma Physics Laboratory Report PPPL--3993 (August 2004) 23 pp.
Phys. Plasmas 12, 042506 (April 2005) 9 pp.
5. Properties of Internal Transport Barrier Formation in JT-60U
Y. Sakamoto, T. Suzuki, S. Ide, Y. Koide, H. Takenaga, Y. Kamada, T. Fujita, T. Fukuda, T. Takizuka, H. Shirai, N. Oyama, Y. Miura, K.W. Hill, G. Rewoldt, JT-60 Team
presented at the 19th International Atomic Energy Agency's (IAEA) Fusion Energy Conference 2002 (CN-94) held in Lyon, France, October 14-19, 2002, paper EX/P2-08. An unedited proceedings is published by IAEA in electronic format (CD-ROM) only. Available on the web in PDF form at http://www.iaea.org/programmes/ripc/physics/
Nucl. Fusion 44, 876--882 (August 2004).
6. Measurement of Turbulence Decorrelation during Transport Barrier Formation in a High Temperature Fusion Plasma
R. Nazikian, K. Shinohara, G.J. Kramer, E. Valeo, K. Hill, T.S. Hahm, G. Rewoldt, S. Ide, Y. Koide, Y. Oyama, H. Shirai, W. Tang
Phys. Rev. Lett. 94, 135002 (April 2005) 4 pp.
7. Comparison of linear microinstability calculations of varying input realism
G. Rewoldt and J.E. Kinsey
Princeton Plasma Physics Laboratory Report PPPL--3865 (September 2003) 5 pp.
Phys. Plasmas 11, 844--845 (February 2004)
8. Stabilizing impact of high gradient of beta on microturbulence
C. Bourdelle, W. Dorland, X. Garbet, G.W. Hammett, M. Kotschenreuther, G. Rewoldt, E.J. Synakowski
Phys. Plasmas 10, 2881--2887(July 2003)
9. Impact of heat deposition profile on global confinement of NBI heated plasmas in the LHD
H. Yamada, S. Murakami, K. Yamazaki, O. Kaneko, J. Miyazawa, R. Sakamoto, K.Y. Watanabe, K. Narihara, K. Tanaka, S. Sakakibara, M. Osakabe, B.J. Peterson, S. Morita, K. Ida, S. Inagaki, S. Masuzaki, T. Morisaki, G. Rewoldt, H. Sugama, N. Nakajima, W.A. Cooper, T. Akiyama, N. Ashikawa, M. Emoto, H. Funaba, P. Goncharov, M. Goto, H. Idei, K. Ikeda, M. Isobe, K. Kawahata, H. Kawazome, K. Khlopenkov, T. Kobuchi, A. Komori, A. Kostrioukov, S. Kubo, R. Kumazawa, Y. Liang, T. Minami, S. Muto, T. Mutoh, Y. Nagayama, Y. Nakamura, H. Nakanishi, Y. Narushima, K. Nishimura, N. Noda, T. Notake, H. Nozato, S. Ohdachi, N. Ohyabu, Y. Oka, T. Ozaki, A. Sagara, T. Saida, K. Saito, M. Sasao, K. Sato, M. Sato, T. Seki, T. Shimozuma, M. Shoji, H. Suzuki, Y. Takeiri, N. Takeuchi, N. Tamura, K. Toi, T. Tokuzawa, Y. Torii, K. Tsumori, T. Watanabe, T. Watari, Y. Xu, I. Yamada, S. Yamamoto, T. Yamamoto, M. Yokoyama, Y. Yoshimura, M. Yoshinuma, T. Mito, K. Itoh, K. Ohkubo, I. Ohtake, T. Satow, S. Sudo, T.Uda, K. Matsuoka, O. Motojima
Nuclear Fusion 43, 749--755 (August 2003)
10. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier
H. Takenaga, S. Higashijima, N. Oyama, L.G. Bruskin, Y. Koide, S. Ide, H. Shirai, Y. Sakamoto, T. Suzuki, K.W. Hill, G. Rewoldt, G.J. Kramer, R. Nazikian, T. Takizuka, T. Fujita, A. Sakasai, Y. Kamada, H. Kubo, JT-60 Team
Nuclear Fusion 43, 1235--1245 (October 2003)
11. Microinstability Studies for the Large Helical Device
G. Rewoldt, L.-P. Ku, W. M. Tang, H. Sugama, N. Nakajima, K. Y. Watanabe, S. Murakami, H. Yamada, W. A. Cooper
Princeton Plasma Physics Laboratory Report PPPL--3661 (January 2002) 17 pp.
Nuclear Fusion 42, 1047--1054 (September 2002)
12. Response of Density and Temperature Profiles to Heat Deposition Profile and Its Impact on Global Scaling in LHD
H. Yamada, S. Murakami, K. Yamazaki, O. Kaneko, J. Miyazawa, R. Sakamoto, K.Y. Watanabe, K. Narihara, K. Tanaka, S. Sakakibara, M. Osakabe, B.J. Peterson, S. Morita, K. Ida, S. Inagaki, S. Masuzaki, T. Morisaki, G. Rewoldt, H. Sugama, N. Nakajima, W.A. Cooper, T. Akiyama, N. Ashikawa, M. Emoto, H. Funaba, P. Goncharov, M. Goto, H. Idei, K. Ikeda, M. Isobe, K. Kawahata, H. Kawazome, K. Khlopenkov, T. Kobuchi, A. Komori, A. Kostrioukov, S. Kubo, R. Kumazawa, Y. Liang, T. Minami, S. Muto, T. Mutoh, Y. Nagayama, Y. Nakamura, H. Nakanishi, Y. Narushima, K. Nishimura, N. Noda, T. Notake, H. Nozato, S. Ohdachi, N. Ohyabu, Y. Oka, T. Ozaki, A. Sagara, T. Saida, K. Saito, M. Sasao, K. Sato, M. Sato, T. Seki, T. Shimozuma, M. Shoji, H. Suzuki, Y. Takeiri, N. Takeuchi, N. Tamura, K. Toi, T. Tokuzawa, Y. Torii, K. Tsumori, T. Watanabe, T. Watari, Y. Xu, I. Yamada, S. Yamamoto, T. Yamamoto, M. Yokoyama, Y. Yoshimura, M. Yoshinuma, T. Mito, K. Itoh, K. Ohkubo, I. Ohtake, T. Satow, S. Sudo, T.Uda, K. Matsuoka, O. Motojima
National Institute for Fusion Science Report NIFS-751 (October 2002) 5 pp.
presented at the 19th International Atomic Energy Agency's (IAEA) Fusion Energy Conference 2002 (CN-94) held in Lyon, France, October 14-19, 2002, paper EX/C4-5Ra. An unedited proceedings will be published by IAEA in electronic format (CD-ROM) only. Will be available on the web in PDF form at http://www.iaea.org/programmes/ripc/physics/.
13. Drift Reversal Capability in Helical Systems
M. Yokoyama, K. Itoh, S. Okamura, K. Matsuoka, N. Nakajima, S.-I. Itoh, G.H. Neilson, M.C. Zarnstorff, G. Rewoldt
National Institute for Fusion Science Report NIFS-756 (October 2002) 5 pp.
presented at the 19th International Atomic Energy Agency's (IAEA) Fusion Energy Conference 2002 (CN-94) held in Lyon, France, October 14-19, 2002, paper IC/P-08. An unedited proceedings will be published by IAEA in electronic format (CD-ROM) only. Will be available on the web in PDF form at http://www.iaea.org/programmes/ripc/physics/.
14. Study of Integrated High-Performance Regimes with Impurity Injection in JT-60U Discharges
K.W. Hill, D.R. Ernst, D. Mikkelsen, G. Rewoldt, S. Higashijima, N. Asakura, H. Shirai, T. Takizuka, S. Konoshima, Y. Kamada, H. Kubo, Y. Miura
presented at the 19th International Atomic Energy Agency's (IAEA) Fusion Energy Conference 2002 (CN-94) held in Lyon, France, October 14-19, 2002, paper EX/P2-03. An unedited proceedings will be published by IAEA in electronic format (CD-ROM) only. Will be available on the web in PDF form at http://www.iaea.org/programmes/ripc/physics/.
15. Microturbulence and flow shear in high-performance JET ITB plasma
R.V. Budny, R. Andre, A. Becoulet, C. Challis, G.D. Conway, W. Dorland, D.R. Ernst, T.S. Hahm, T.C. Hender, D. McCune, G. Rewoldt, S.E. Sharapov, and contributors to the EFDA-JET Workprogramme
Princeton Plasma Physics Laboratory Report PPPL--3637 (December 2001) 24 pp.
Plasma Phys. Control. Fusion 44, 1215--1228 (July 2002).
16. Radial Patterns of Instability and Transport in JT-60U Internal Transport Barrier Discharges
G. Rewoldt, K.W. Hill, R. Nazikian, W.M. Tang, H. Shirai, Y. Sakamoto, Y. Kishimoto, S. Ide, T. Fujita
Princeton Plasma Physics Laboratory Report PPPL--3547 (February 2001) 12 pp.
Nuclear Fusion 42, 403--411 (April 2002)
17. Configuration flexibility and extended regimes in Large Helical Device
H. Yamada, A. Komori, N. Ohyabu, O. Kaneko, K. Kawahata, K.Y. Watanabe, S. Sakakibara, S. Murakami, K. Ida, R. Sakamoto, Y. Liang, J. Miyazawa, K. Tanaka, Y. Narushima, S. Morita, S. Masuzaki, T. Morisaki, N. Ashikawa, L.R. Baylor, W.A. Cooper, M. Emoto, P.W. Fisher, H. Funaba, M. Goto, H. Idei, K. Ikeda, S. Inagaki, N. Inoue, M. Isobe, K. Khlopenkov, T. Kobuchi, A. Kostrioukov, S. Kubo, T. Kuroda, R. Kumazawa, T. Minami, S. Muto, T. Mutoh, Y. Nagayama, N. Nakajima, Y. Nakamura, H. Nakanishi, K. Narihara, K. Nishimura, N. Noda, T. Notake, S. Ohdachi, Y. Oka, M. Osakabe, T. Ozaki, B.J. Peterson, G. Rewoldt, A. Sagara, K. Saito, H. Sasao, M. Sasao, K. Sato, M. Sato, T. Seki, H. Sugama, T. Shimozuma, M. Shoji, H. Suzuki, Y. Takeiri, N. Tamura, K. Toi, T. Tokuzawa, Y. Torii, K. Tsumori, T. Watanabe, I. Yamada, S. Yamamoto, M. Yokoyama, Y. Yoshimura, T. Watari, Y. Xu, K. Itoh, K. Matsuoka, K. Ohkubo, T. Satow, S. Sudo, T. Uda, K. Yamazaki, O. Motojima, M. Fujiwara
presented at the 28th European Physical Society Plasma Physics meeting, Funchal, Portugal, June 18--22, 2001
Plasma Phys. Control. Fusion 43, A55-A71 (December 2001)
18. Energy Confinement and Thermal Transport Characteristics of Net-Current Free Plasmas in Large Helical Device
H. Yamada, K.Y. Watanabe, K. Yamazaki, S. Murakami, S. Sakakibara, K. Narihara, K. Tanaka, M. Osakabe, K. Ida, N. Ashikawa, P. deVaries, M. Emoto, H. Funaba, M. Goto, H. Idei, K. Ikeda, S. Inagaki, N. Inoue, M. Isobe, S. Kado, O. Kaneko, K. Kawahata, K. Khlopenkov, A. Komori, S. Kubo, R. Kumazawa, S. Masuzaki, T. Minami, J. Miyazawa, T. Morisaki, S. Morita, S. Muto, T. Mutoh, Y. Nagayama, N. Nakajima, Y. Nakamura, H. Nakanishi, K. Nishimura, N. Noda, T. Notake, T. Kobuchi, Y. Liang, S. Ohdachi, N. Ohyabu, Y. Oka, T. Ozaki, R.O. Pavlichenko, B.J. Peterson, G. Rewoldt, A. Sagara, K. Saito, R. Sakamoto, H. Sasao, M. Sasao, K. Sato, M. Sato, T. Seki, T. Shimozuma, M. Shoji, H. Sugama, H. Suzuki, M. Takechi, Y. Takeiri, N. Tamura, K. Toi, T. Tokuzawa, Y. Torii, K. Tsumori, I. Yamada, S. Yamaguchi, S. Yamamoto, M. Yokoyama, Y. Yoshimura, T. Watari, K. Itoh, K. Matsuoka, K. Ohkubo, I. Ohtake, S. Satoh, T. Satow, S. Sudo, S. Tanahashi, T. Uda, Y. Hamada, O. Motojima, M. Fujiwara
National Institute for Fusion Science Report NIFS-651 (September 2000) 8 pp.
presented at the 18th International Atomic Energy Agency's (IAEA) Fusion Energy Conference 2000 (FEC-2000) held in Sorrento, Italy, October 4-10, 2000, paper EX6/7. An unedited proceedings has been published by IAEA in electronic format (CD-ROM) only. Available on the web in PDF form at http://www.iaea.org/programmes/ripc/physics/fec2000/html/node102.htm.
Nuclear Fusion 41, 901--908 (July 2001)
19. Drift Mode Calculations for the Large Helical Device
G. Rewoldt, L.-P. Ku, W.M. Tang, H. Sugama, N. Nakajima, K. Y. Watanabe, S. Murakami, H. Yamada
Princeton Plasma Physics Laboratory Report PPPL--3451 (June 2000) 19 pp.
Phys. Plasmas 7, 4942--4947 (December 2000)
20. Drift Mode Calculations in Nonaxisymmetric Geometry
G. Rewoldt, L.-P. Ku, W. M. Tang, and W. A. Cooper
Princeton Plasma Physics Laboratory Report PPPL--3354 (July 1999) 23 pp.
Phys. Plasmas 6, 4705--4713 (December 1999)
21. Comparative studies of core and edge transport barrier dynamics of DIII-D and TFTR tokamak plasmas
E.J. Synakowski, M.A. Beer, R.E. Bell, K.H. Burrell, B.A. Carreras, P.H. Diamond, E.J. Doyle, D. Ernst, R.J. Fonck, P. Gohil, C.M. Greenfield, T.S. Hahm, G.W. Hammett, F.M. Levinton, E. Mazzucato, G. McKee, D.E. Newman, H.K. Park, C.L. Rettig, G. Rewoldt, T.L. Rhodes, B.W. Rice, G. Taylor, and M.C. Zarnstorff
in Proceedings of the Seventeenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Yokohama, Japan, October 1998), (International Atomic Energy Agency, Vienna, Austria, 1999),
Nucl. Fusion 39, 1733--1741 (November 1999)
22. Reduced transport and E_r shearing in improved confinement regimes in JT-60U
H. Shirai, M. Kikuchi, T. Takizuka, T. Fujita, Y. Koide, G. Rewoldt, D. Mikkelsen, R. Budny, W.M. Tang, Y. Kishimoto, Y. Kamada, T. Oikawa, O. Naito, T. Fukuda, N. Isei, Y. Kawano, M. Azumi, and the JT-60 Team
in Proceedings of the Seventeenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Yokohama, Japan, October 1998), (International Atomic Energy Agency, Vienna, Austria, 1999),
Nucl. Fusion 39, 1713--1722 (November 1999)
23. Exploration of spherical torus physics in the NSTX Device
M. Ono, S.M. Kaye, Y.-K.M. Peng, G. Barnes, W. Blanchard, M.D. Carter, J. Chrzanowski, L. Dudek, R. Ewig, D. Gates, R.E. Hatcher, T. Jarboe, S.C. Jardin, D. Johnson, R. Kaita, M. Kalish, C.E. Kessel, H.W. Kugel, R. Maingi, R. Majeski, J. Manickam, B. McCormack, J. Menard, D. Mueller, B.A. Nelson, B.E. Nelson, C. Neumeyer, G. Oliaro, F. Paoletti, R. Parsells, E. Perry, N. Pomphrey, S. Ramakrishnan, R. Raman, G. Rewoldt, J. Robinson, A.L. Roquemore, P. Ryan, S. Sabbagh, D. Swain, E.J. Synakowski, M. Viola, M. Williams, J.R. Wilson, and the NSTX Team
Princeton Plasma Physics Laboratory Report PPPL--3330 (October 1998) 4 pp.
in Proceedings of the Seventeenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Yokohama, Japan, October 1998), (International Atomic Energy Agency, Vienna, Austria, 1999),
Nucl. Fusion 40, 557--561 (March 2000)
24. Physics Design of the National Spherical Torus Experiment
S.M. Kaye, M. Ono, Y.-K.M. Peng, D.B. Batchelor, M.D. Carter, W. Choe, R. Goldston, Y.S. Hwang, E.F. Jaeger, T. Jarboe, S. Jardin, D. Johnson, R. Kaita, C. Kessel, H. Kugel, R. Maingi, R. Majeski, J. Manickam, J. Menard, D.R. Mikkelsen, D. Orvis, B. Nelson, F. Paoletti, N. Pomphrey, G. Rewoldt, S. Sabbagh, D.J. Strickler, E. Synakowski, J.R. Wilson
Princeton Plasma Physics Laboratory Report PPPL--3322 (November 1998) 43 pp.
Fusion Technology 36, 16--37 (July 1999)
25. Results from D-T Experiments on TFTR and Implications for Achieving an Ignited Plasma
R.J. Hawryluk, S. Batha, W. Blanchard, M. Beer, M.G. Bell, {\it et al.}
Phil. Trans. R. Soc. Lond. A 357, 443--469 (1999)
26. Drift Mode Growth Rates and Associated Transport
Aaron J. Redd, Arnold H. Kritz, Glenn Bateman, Gregory Rewoldt, and W. M. Tang
Phys. Plasmas 6, 1162--1167 (April 1999)
27. Comparisons and physics basis of tokamak transport models and turbulence simulations
A.M. Dimits, G. Bateman, M.A. Beer, B.I. Cohen, W. Dorland, G.W. Hammett, C. Kim, J.E. Kinsey, M. Kotschenreuther, A.H. Kritz, L.L. Lao, J. Mandrekas, W.M. Nevins, S.E. Parker, A.J. Redd, D.E. Shumaker, R. Sydora, and J. Weiland
Phys. Plasmas 7, 969 (2000)
28. Comparison of Sheared Rotation Effects on Kinetic Stability in Tokamak Plasmas
G. Rewoldt, M. S. Chance, T. S. Hahm, and W. M. Tang
in Proceedings of the 1998 International Conference on Plasma Physics combined with the 25th European Physical Society Conference on Controlled Fusion and Plasma Physics, Praha, June 29 -- July 3, 1998, Edited by P. Pavlo, Europhysics Conference Abstracts, Vol. 22C, 4 page paper published on CD-ROM, paper G046PR (P1.195).
29. Recent experimental and analytic progress in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade with the W-shaped divertor configuration
H. Shirai and the JT-60 Team
Phys. Plasmas 5, 1712--1720 (May 1998)
30. Role of ExB flow shear on confinement enhancement in DIII-D high internal inductance discharges with high-confinement edge modes in tokamaks
L.L. Lao, R.J. LaHaye, K.H. Burrell, V.S. Chan, J.R. Ferron, C.L. Rettig, G. Rewoldt, J.T. Scoville, G.M. Staebler, E.J. Strait, W.M. Tang, T.S. Taylor, and D. Wroblewski,
General Atomics Report GA--A22675 (October 1997) 23~pp.
Phys. Plasmas 5, 1050--1055 (April 1998)
31. Measurements of ion temperature fluctuations in the tokamak fusion test reactor
H.T. Evensen, R.J. Fonck, S.F. Paul, G. Rewoldt, S.D. Scott, W.M. Tang, M.C. Zarnstorff
Nucl. Fusion 38, 237--248 (February 1998)
32. Microinstability Properties of Negative Magnetic Shear Discharges in the Tokamak Fusion Test Reactor and DIII-D
G. Rewoldt, L.L. Lao, and W.M. Tang,
Princeton Plasma Physics Laboratory Report PPPL--3243 (March 1997) 35 pp.
Phys. Plasmas 4, 3293--3305 (September 1997)
33. Sheared rotation effects on kinetic stability in enhanced confinement tokamak plasmas, and nonlinear dynamics of fluctuations and flows in axisymmetric plasmas
G. Rewoldt, M. A. Beer, M. S. Chance, T. S. Hahm, Z. Lin, and W. M. Tang
Princeton Plasma Physics Laboratory Report PPPL--3276 (November 1997) 23 pp.
Phys. Plasmas 5, 1815--1821 (May 1998)
34. Comparison of Sheared Rotation Effects on Kinetic Stability in Tokamak Plasmas
G. Rewoldt, M. S. Chance, T. S. Hahm, and W. M. Tang
in Proceedings of the 1998 International Conference on Plasma Physics combined with the 25th European Physical Society Conference on Controlled Fusion and Plasma Physics, Praha, June 29 -- July 3, 1998, Edited by P. Pavlo, Europhysics Conference Abstracts, Vol. 22C, 4 page paper published on CD-ROM, paper G046PR (P1.195).
35. Reduced Transport and E_R Shearing in Improved Confinement Regimes in JT-60U
H. Shirai, M. Kikuchi, T. Takizuka, T. Fujita, Y. Koide, G. Rewoldt, D. Mikkelsen, R. Budny, W.M. Tang, Y. Kishimoto, Y. Kamada, T. Oikawa, O. Naito, T. Fukuda, N. Isei, Y. Kawano, M. Azumi, and the JT-60 Team
to be published in Proceedings of the Seventeenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Yokohama, Japan, October 1998), (International Atomic Energy Agency, Vienna, Austria, 1999),
Paper IAEA-CN-69/EX5/4
36. Roles of Electric Field Shear and Shafranov Shift in Sustaining High Confinement in Enhanced Reversed Shear Plasmas on the TFTR Tokamak
E.J. Synakowski, S.H. Batha, M.A. Beer, M.G. Bell, R.E. Bell, R.V. Budny, C.E. Bush, P.C. Efthimion, G.W. Hammett, T.S. Hahm, B. LeBlanc, F. Levinton, E. Mazzucato, H. Park, A.T. Ramsey, G. Rewoldt, S.D. Scott, G. Schmidt, W.M. Tang, G. Taylor, and M.C. Zarnstorff,
Princeton Plasma Physics Laboratory Report PPPL--3233 (February 1997) 15 pp.
Phys. Rev. Lett. 78, 2972--2975 (April 1997)
37. Alpha-Driven Magnetohydrodynamics (MHD) and MHD-Induced Alpha Loss in the Tokamak Fusion Test Reactor
Z. Chang, R. Nazikian, G.Y. Fu, R.B. White, S.J. Zweben, E.D. Fredrickson, S.H. Batha, M.G. Bell, R.E. Bell, R.V. Budny, C.E. Bush, L. Chen, C.Z. Cheng, D. Darrow, B. LeBlanc, F.M. Levinton, R.P. Majeski, D.K. Mansfield, K.M. McGuire, H.K. Park, G. Rewoldt, E.J. Synakowski, W.M. Tang, G. Taylor, S. von Goeler, K.L. Wong, L. Zakharov, and the TFTR Group
Princeton Plasma Physics Laboratory Report PPPL--3231 (February 1997) 30 pp.
Phys. Plasmas 4, 1610--1616 (May 1997)
38. Local transport barrier formation and relaxation in reverse-shear plasmas on the Tokamak Fusion Test Reactor
E.J. Synakowski, S.H. Batha, M.A. Beer, M.G. Bell, R.E. Bell, R.V. Budny, C.E. Bush, P.C. Efthimion, T.S. Hahm, G.W. Hammett, B. LeBlanc, F. Levinton, E. Mazzucato, H. Park, A.T. Ramsey, G. Rewoldt, G. Schmidt, S.D. Scott, W.M. Tang, G. Taylor, and M.C. Zarnstorff
Princeton Plasma Physics Laboratory Report PPPL--3237 (February 1997) 29 pp.
Phys. Plasmas 4, 1736--1744 (May 1997)
39. Microinstability Properties of Small-Aspect-Ratio Tokamaks
G. Rewoldt, W. M. Tang, S. Kaye, and J. Menard
Phys. Plasmas 3, 1667--1672 (May 1996)
40. Microinstability Analysis of DIII-D High-Performance Discharges
G. Rewoldt, L.L. Lao, and W.M. Tang,
General Atomics Report GA--A22228 (April 1996) 40 pp.
Phys. Plasmas 3, 4074--4083 (November 1996)
41. Rotational and Magnetic Shear Stabilization of Magnetohydrodynamic Modes and Turbulence in DIII-D High Performance Discharges
L.L. Lao, K.H. Burrell, T.S. Casper, V.S. Chan, M.S. Chu, J.C. DeBoo, E.J. Doyle, R.D. Durst, C.B. Forest, C.M. Greenfield, R.J. Groebner, F.L. Hinton, Y. Kawano, E.A. Lazarus, Y.R. Lin-Liu, M.E. Mauel, W.H. Meyer, R.L. Miller, G.A. Navratil, T.H. Osborne, Q. Peng, C.L. Rettig, G. Rewoldt, T.L. Rhodes, B.W. Rice, D.P. Schissel, B.W. Stallard, E.J. Strait, W.M. Tang, T.S. Taylor, A.D. Turnbull, R.E. Waltz, and the DIII-D Team,
General Atomics Report GA--A22258 (January 1996) 27~pp.
Phys. Plasmas 3, 1951--1958 (May 1996)
42. Turbulent Fluctuations in TFTR Configurations with Reversed Magnetic Shear
E. Mazzucato, S.H. Batha, M. Beer, M. Bell, R.E. Bell, R.V. Budny, C. Bush, T.S. Hahm, G.W. Hammett, F.M. Levinton, R. Nazikian, H. Park, G. Rewoldt, G.L. Schmidt, E.J. Synakowski, W.M. Tang, G. Taylor, and M.C. Zarnstorff,
Phys. Rev. Lett. 77, 3145--3148 (October 1996)
43. Dynamics of Transition to Enhanced Confinement in Reversed Magnetic Shear Discharges
P.H. Diamond, V.B. Lebedev, D.E. Newman, B.A. Carreras, T.S. Hahm, W.M. Tang, G. Rewoldt, and K. Avinash
Phys. Rev. Lett. 78, 1472--1475 (February 1997)
44. Turbulent Fluctuations in the Main Core of TFTR Plasmas with Negative Magnetic Shear
E. Mazzuccato, S.H. Batha, M. Beer, M. Bell, R.E. Bell, R.V. Budny, C. Bush, P.C. Efthimion, T.S. Hahm, G.W. Hammett, B. LeBlanc, F.M. Levinton, R. Nazikian, H. Park, S. Paul, G. Rewoldt, G.L. Schmidt, S.D. Scott, E.J. Synakowski, W.M. Tang, G. Taylor, and M.C. Zarnstorff
to be published in Proceedings of the Sixteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Montreal, Canada, October 1996), (International Atomic Energy Agency, Vienna, Austria, 1997), Paper IAEA-CN-64/AP2-16
45. Transport Barrier Formation in TFTR Reversed Magnetic Shear Plasmas
R.E. Bell, S.H. Batha, M. Beer, C.E. Bush, Z. Chang, P.C. Efthimion, T.S. Hahm, G. Hammett, F. Levinton, B. LeBlanc, E. Mazzucato, D. Mikkelsen, H. Park, S. Paul, G. Rewoldt, G.L. Schmidt, S.D. Scott, E.J. Synakowski, G. Taylor, M.C. Zarnstorff, and the TFTR Group
to be published in Proceedings of the Twenty-third European Physical Society Conference on Controlled Fusion and Plasma Physics, (Kiev, Ukraine, June 1996), (EPS, Petit-Lanche, Switzerland, 1997), Paper A-011
46. High-frequency core localized modes in neutral beam heated plasmas on TFTR
R. Nazikian, Z. Chang, E.D. Fredrickson, E. Mazzucato, S.H. Batha, \item{} R. Bell, R. Budny, C.E. Bush, C.Z. Cheng, A. Janos, F. Levinton, J. Manickam,
D.K. Mansfield, H.K. Park, G. Rewoldt, S. Sabbagh, E.J. Synakowski, W. Tang, \item{} G. Taylor, and L.E. Zakharov.
Phys. Plasmas 3, 593--605 (February 1996)
47. First Observation of Alpha Particle Loss Induced by Kinetic Ballooning Modes in TFTR Deuterium-Tritium Experiments
Zuoyang Chang, R.V. Budny, L. Chen, D. Darrow, E.D. Fredrickson, A. Janos, \item{} D. Mansfield, E. Mazzucato, K.M. McGuire, R. Nazikian, G. Rewoldt, J.D. Strachan, W.M. Tang, G. Taylor, R.B. White, S. Zweben, and the TFTR group,
Phys. Rev. Lett. 76, 1071--1074 (February 1996)
48. Comparison of Initial Value and Eigenvalue Codes for Kinetic Toroidal Plasma Instabilities
M. Kotschenreuther, G. Rewoldt, and W.M. Tang
Princeton University, Plasma Physics Laboratory Report PPPL-2986 (April 1994) 23 pp.
Comput. Phys. Commun. 88, 128-140 (August, 1995)
49. Tritium Transport, Influx, and Helium Ash Measurements on TFTR \item{} During DT Operation
P.C. Efthimion, L.C. Johnson, C.H. Skinner, J.D. Strachan, E. J. Synakowski, M. Zarnstorff, H. Adler, C. W. Barnes, R. Bell, R. V. Budny, R. J. Fonck, F. C. Jobes, J. Kamperschroer, S. E. Kruger, W. W. Lee, M. Loughlin, D. McCune, G. McKee, D. R. Mikkelsen, D. Mueller, D. K. Owens, A. T. Ramsey, G. Rewoldt, A. L. Roquemore, D. P. Stotler, B. C. Stratton, W. M. Tang, G. Taylor, and the TFTR Group
Princeton University, Plasma Physics Laboratory Report PPPL-3083 (March 1995) 16 pp.
Fifteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville, Spain, September 26-October 1, 1994
in Proceedings of the Fifteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Seville, Spain, September/October 1994), (International Atomic Energy Agency, Vienna, 1995)
Paper IAEA-CN-60/A-2-II-6
50. Improved Plasma Performance in Tokamaks with Negative Magnetic Shear
C. Kessel, J. Manickam, G. Rewoldt, and W.M. Tang
Phys. Rev. Lett. 72, 1212-1215 (February, 1994)
51. Transport Implications of Non-monotonic-q Tokamak Configurations
G. Rewoldt, W.M. Tang J. Manickam, and C. Kessel
in Proceedings of the Workshop on Local Transport Studies in Fusion Plasmas, International School of Plasma Physics ``Piero Calderola'', Villa Monastero, Varenna, Italy, August 30 - September 3, 1993, edited by J.D. Callen, G. Gorini, and E. Sindoni, (Editrice Compositori, Bologna, 1993), p. 333-338
52. Helium, Iron, and Electron Particle Transport and Energy Transport Studies on the Tokamak Fusion Test Reactor
E.J. Synakowski, P.C. Efthimion, G. Rewoldt, B.C. Stratton, W.M. Tang, B. Grek, K.W. Hill, R.A. Hulse, D.W. Johnson, M.W. Kissick, D.K. Mansfield, D. McCune, D.R. Mikkelsen, H.K. Park, A.T. Ramsey, M.H. Redi, S.D. Scott, G. Taylor, J. Timberlake, and M.C. Zarnstorff,
Princeton University, Plasma Physics Laboratory Report PPPL-2881 (February 1993) 41 pp.
Phys. Fluids B 5, 2215--2218 (July 1993)
53. Comparison of High-n Instabilities Including Alpha-Particle Effects in BPX and TFTR
G. Rewoldt
Princeton University, Plasma Physics Laboratory Report PPPL-2772 (July 1991) 28 pp.
Nucl. Fusion 31, 2333--2348 (December 1992)
54. The Relationship Between Turbulence Measurements and Transport \item{} in Different Heating Regimes in TFTR
N. Bretz, E. Mazzucato, R. Nazikian, S. Paul, G. Rewoldt, E. J. Synakowski, W. Tang, and M. Zarnstorff
Fourteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Wurzburg, Germany, 30 September-7 October 1992
in Proceedings of the Fourteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Wurzburg, Germany, 30 September-7 October 1992) (International Atomic Energy Agency, Vienna, 1993), Vol. I, p. 551--560 (1993)
55. Particle and Energy Transport Studies on TFTR and Implications for Helium Ash in Future Fusion Devices
E.J. Synakowski, P.C. Efthimion, G. Rewoldt, B.C. Stratton, W. M. Tang, R. E. Bell, B. Grek, R. A. Hulse, D. W. Johnson, K. W. Hill, D. K. Mansfield, D. McCune, D. R. Mikkelsen, H. K. Park, A. T. Ramsey, S. D. Scott, G. Taylor, J. Timberlake, and M. C. Zarnstorff
Princeton University, Plasma Physics Laboratory PPPL-2887 (March 1993) 14 pp.
Fourteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Wurzburg, Germany, September 1992
in Proceedings of the Fourteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Wurzburg, Germany, September 1992) (International Atomic Energy Agency, Vienna, 1993), Vol. I, p. 541--550 (1993)
56. Comparison of Steady-State and Perturbative Transport Coefficients in TFTR
P. C. Efthimion, C. W. Barnes, M. G. Bell, H. Biglari, N. Bretz, P. H. Diamond, G. Hammett, W. Heidbrink, R. Hulse, D. Johnson, Y. Kusama, D. Mansfield, S. S. Medley, R. Nazikian, H. Park, A. Ramsey, G. Rewoldt, S. D. Scott, J. D. Strachan, B. C. Stratton, E. Synakowski, W. M. Tang, G. Taylor, M. C. Zarnstorff, and S. J. Zweben
Thirty-second Annual Meeting of the American Physical Society, Division of Plasma Physics, November 1990
Phys. Fluids B 3, 2315-2323 (August 1991)
57. Theoretical Calculations and Experimental Comparisions for High-n Toroidal Instabilities and Quasilinear Fluxes
G. Rewoldt and W. M. Tang
in Proceedings of the Eigtheenth European Physical Society Meeting, (Berlin, Germany, June 1991)
58. Observation of Temperature Dependent Transport in TFTR
P.C. Efthimion, D.K. Mansfield, B.C. Stratton, E. Synakowski, A. Bhattacharjee, H. Biglari, P.H. Diamond, R.J. Goldston, C.C. Hegna, D. McCune, G. Rewoldt, S. Scott, W.M. Tang, G. Taylor, R.E. Walsh, R.M. Wieland, and M.C. Zarnstorff,
Princeton University, Plasma Physics Laboratory Report PPPL-2723 (October 1990) 12 pp.
Phys. Rev. Lett. 66, 421--424 (January 1991)
59. Advances in Transport Understanding Using Perturbative Techniques in TFTR
M.C. Zarnstorff, C.W. Barnes, P.C. Efthimion, G.W. Hammett, W. Horton, R. A. Hulse, D. K. Mansfield, E. S. Marmar, K. McGuire, G. Rewoldt, B. C. Stratton, E. J. Synakowski, W. M. Tang, J. Terry, X. Q. Xu, M. G. Bell, M. Bitter, N. L. Bretz, R. Budny, C. E. Bush, R. J. Fonck, E. D. Fredrickson, H. P. Furth, R. J. Goldston, B. Grek, R. J. Hawryluk, K. W. Hill, H. Hsuan, D. W. Johnson, D. C. McCune, D. M. Meade, S. S. Medley, D. Mueller, D. K. Owens, H. K. Park, A. T. Ramsey, M. N. Rosenbluth, J. Schivell, G. L. Schmidt, S. D. Scott, G. Taylor, and R. M. Wieland
Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Washington, DC, October 1990
in Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Washington, DC, October 1990), (International Atomic Energy Agency, Vienna, 1991), Vol. I, p. 109--122 (1991)
60. Internal Microturbulence Studies on DIII-D, TEXT, and TFTR
W.A. Peebles, D.L. Brower, R. Philipona, K. Burrell, R. Bravenec, E. J. Doyle, R. Groebner, N. C. Luhmann, Jr., H. Matsumoto, C. Rettig, B. A. Smith, C. X. Yu, R. P. Seraydarian, Z. M. Zhang, DIII-D/TEXT Research Groups, N. Bretz, A. Cavallo, R. J. Fonck, T. S. Hahm, E. Mazzucato, R. Nazikian, S. F. Paul, G. Rewoldt, D. R. Roberts, W. M. Tang, A. C. Janos, G. Taylor, and the TFTR Research Group
Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Washington, DC, October 1990
in Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (Washington, DC, October 1990), (International Atomic Energy Agency, Vienna, 1991), Vol. I, p. 589--598 (1991)
61. Toroidal Microinstability Studies of High Temperature Tokamaks
G. Rewoldt and W. M. Tang
Princeton University, Plasma Physics Laboratory Report PPPL-2635 (July 1989) 19 pp.
Phys. Fluids B 2, 318--323 (February 1990)
62. Alpha-Particle Effects on High-n Instabilities in Tokamaks
G. Rewoldt
Princeton University, Plasma Physics Laboratory Report PPPL-2532 (June 1988) 37 pp.
Phys. Fluids 31, 3727--3737 (December 1988)
63. Collisional Effects on Kinetic Electromagnetic Modes and Associated Quasilinear Transport
G. Rewoldt, W. M. Tang, and R. J. Hastie
Princeton University, Plasma Physics Laboratory Report PPPL-2367 (August 1986) 37 pp.
Phys. Fluids 30, 807--817 (March 1987)
64. Microinstabilities in Weak Density Gradient Tokamak Systems
W. M. Tang, G. Rewoldt, and Liu Chen
Princeton University, Plasma Physics Laboratory Report PPPL-2337 (April 1986) 18 pp.
Phys. Fluids 29, 3715--3718 (November 1986)
65. Kinetic Analysis of MHD Ballooning Modes in Tokamaks
W. M. Tang, G. Rewoldt, C. Z. Cheng, and M. S. Chance
Princeton University, Plasma Physics Laboratory Report PPPL-2155 (October 1984) 44 pp.
Nucl. Fusion 25, 151--164 (February 1985)
66. Influence of Hot Beam Ions on MHD Ballooning Modes in Tokamaks
G. Rewoldt and W. M. Tang
Princeton University, Plasma Physics Laboratory Report PPPL-2127 (July 1984) 17 pp.
Nucl. Fusion 24, 1573--1577 (December 1984)
67. Studies of Bean Shaped Tokamaks and Beta Limits for Reactor Design
M. Okabayashi, P. Beiersdorfer, K. Bol, D. Buchenauer, M. S. Chance, P. Couture, H. P. Eubank, H. Fishman, R. J. Fonck, G. Gammel, G. J. Goldston, J. M. Greene, B. Grek, R. C. Grimm, W. Heidbrink, F. J. Helton, K. Ida, S. Ishida, K. Itami, R. Izzo, K. P. Jaehnig, S. C. Jardin, D. W. Johnson, R. Kaita, S. M. Kaye, H. W. Kugel, B. LeBlanc, J. Manickam, K. McGuire, D. Mueller, D. A. Monticello, W. Park, M. W. Phillips, M. Reusch, G. Rewoldt, G. L. Schmidt, S. Sesnic, W. Stodiek, H. Takahashi, W. M. Tang, A. M. M. Todd, F. H. Tenney, J. W. Wesley, and R. B. White
Princeton University, Plasma Physics Laboratory Report PPPL-2141 (September 1984) 9 pp.
Tenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research London, England (September 1984)
in Proceedings of the Tenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, (International Atomic Energy Agency, Vienna, 1985) Vol. I, p. 229--238 (1985)
68. Experimental Investigation of the Linear and Nonlinear Properties of an Impurity-Driven Drift Wave
G. R. Allen, M. Yamada, G. Rewoldt, and W. M. Tang
Princeton University, Plasma Physics Laboratory Report PPPL-1757 (April 1982) 26 pp.
Phys. Fluids 25, 2347--2352 (December 1982)
69. Beam-Ion and Alpha-Particle Effects on Microinstabilities in Tokamaks
G. Rewoldt and W. M. Tang
Princeton University, Plasma Physics Laboratory Report PPPL-1955 (November 1982) 18 pp.
Phys. Fluids 26, 3619--3623 (December 1983)
70. Electromagnetic Kinetic Toroidal Eigenmodes for General Magnetohydrodynamic Equilibria
G. Rewoldt, W. M. Tang, and M. S. Chance
Princeton University, Plasma Physics Laboratory Report PPPL-1830 (August 1981) 48 pp.
Phys. Fluids 25, 480--490 (March 1982)